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[From: Moscow State University Science Record, Vol. 172, 1954, pp. 79-124]

V. A. Prokof'yev

ON THE QUESTION OF CALCULATION OF RADIATION IN ONE-DIMENSIONAL MOVEMENT
OF MONATOMIC GASY
The development of investigations in various fields of science brings
forth ever more frequently hydrodynamic problems for the solution of which
consideration has to be given to those physical properties of liquid or
gas which have been completely disregarded in classical hydrodynamics
since in ordinary problems their action was either not at all manifested
or their effect could be disregarded to one degree or another for simpli-
fication of calculations. To such properties is related the ability of
a material medium in any state to emit and absorb energy. Under certain
conditions, which are dealt with in astrophysical problems, dynamic
meteorology, and also in several other tasks, radiation so strongly in-
#lusncass resultas that it becomes impossible to ignore it. The necessity
for calculation of radiation in hydrodynamic problems is nearly always
linked to high temperatures in some fields of a moving medium. Calcula-
tion of radiational transfer of heat, and with very high temperatures
and mechanical action of radiation, is linked with great difficulties of
both a mathematical and purely physical character (because of the com-
plexity and in many regards vagueness of those physical processes which

occur at very high temperatures and pressures).

l. The work was presented at a seminar under the direction of L. I.
Sedov at Moscow State University in 1947 - 1948 and at a seminar at the
Institute of Mechanics, Academy of Sciences, USSR, in 1949 (for homo-
geneous gas); sections 5 and 6 (for ionized gas) - at the first All-
Union Conference on Aerohydrodynamics at the Institute of Mechanics,
Academy of Sciences, USSR, in 1952.



In the present article, an attempt is made in the instance of
established one-dimensional movement of monatomic ideal (in a hydro-
dynamic sense) gas to examine the effect on the characteristic of a
stream of radiation and ionization, wherein it is assumed that there
is local thermodynamic equilibrium. As an example is considered the
problem of structure of a compression wave, for which calculations are
made.

Consideration of basic equations of hydrodynamics with calculation
of influx of heat due to radiation (in conformity with dynamic meteorology)
is contained in an article by Ye. S. Kuznetsov [1]. In the present work
is introduced only supplementary information which is linked either with
unsteadiness of the radiation field or with mechanical action of the
radiation (which were not considered in [1]).

Section 1. Interaction of Radiation with a Material Medium

We will consider that each particle of gas absorbs, radiates, and

P tica ensrgy s¢ that an entire stream of gas is permeated
with streams of radiation energy. Conversion of other forms of energy
into radiation, and, on the contrary, conversion of radiation energy into
other forms (for example, into heat) represents a complicated intra-atomic
and intra-moclecular process and is the subject of special subdivisions of
physics. For our purposes, it is desirable in calculation of radiation
to as far as possible not disturb the idea of material continuum under-
lying hydromechanics, and to divert ourselves from consideration of ele-
mentary radiators as in hydromechanics we divert ourselves from discretion
of the atomic and molecular structure of fluid. Such macroscopic study

of a radiation field from the point of view of geometric optics is widely



conducted in several branches of physics and makes it possible to quan-
titatively characterize the interaction of radiation with material con-
tinuum (see, for example, (1, €21, [3], [4]). We will introduce defini-
tions and correlations here related, not going into detailed consideration

of them.

Intensity of Radiation. The quantity of radiation energy dEv which
is transferred by an elementary ground do in a given direction s (Figure
1) (i.e., by "rays" contained in an infinitesimal solid angle dst circum-
scribed around the direction s8), for a short time dt, of spectral compo-
sition, and contained in an interval of frequencies from v to v + dv,

may be expressed by the formula:
dE,=1,dvdacos (n. s)dQdt )

Fig- 1.

The coefficient of proportionality Iv depends on the frequency of
radiation v, direction s, time t, and the coordinates of point P, around
which is constructed ground do, and is called the specific intensity of
radiation (or else it is simply called the intensity of radiation, with
the brightness of radiation the strength of radiation). If we sum up
the intensities of all frequencies in the given point P, in a given
moment of time t, and for radiation of a given direction s, then we ob-

tain the integral intensity

]=fl,dv; (2)
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Stream of Radiation. The magnitude

H,, = | I, cos(n, 5)dQ
! (3)

represents the‘complete quantity of radiation energy of the frequency v
of all directions, passing in a unit of time through a unit of area, the
orientation of which in space is given with the normal n (integration in
all directions is designated by 4 m, provided with the sign of the in-

T reWw characteristic of the radiation field,

tegral). his magnitude is s

not depending on the direction of the ray.

an may be considered as a projection to the normal n of a vector
ﬁv. The magnitude ﬁv and also the magnitude an are called the stream
of radiation energy of frequency v. If we integrate it with all fre-
quencies, we obtain an integral stream of radiation energy not dependent
on frequency:

‘H,'?llco‘s (n. s)dQ.\; i)

¢

Coefficient of Radiation. ZEuission {radiation) of radiation energy

is an atomic-molecular process. In order that the macroscopic examina-
tion made by us correspond to actuality, it is necessary that the ele-
mentary volume of gas selected be large enough that the total energy
radiated by it be completely determined by macroscopic characteristics
of the gas filling this volume, i.e., by the temperature, pressure, and
density; at the same time, this volume should also be small enough that
within this volume these characteristics can be considered constant (with
precision to the small of a higher order) and determined by the state of
the gas.

If a material medium in a chosen element of a volume in the limits

of the s0lid angle d{l.radiates in the time dt a quantity of energy equal




to dEv’ whereto frequencies of radiation are changed to a narrow interval
from v to v + dv, then it may be supposed that:

4E‘=n,ddedtpdt. (5)
where “v is the mass coefficient of radiation. For natural radiation
in an isotrope body nv is considered to be not dependent on direction
but dependent on frequency v, the coordinates of point P, and on time t.

Coefficient of Absorption. Weakening of the intensity of each ray

when it passes through a material medium, on a sufficiently small seg-
ment of a path, may be considered proportional to the length of the path
ds and to the intensity of radiation Iv' and therefore, the magnitude by
which the intensity decreases may be written:
pa,l,ds, (6) .

where o, is the mass coefficientAof absorption. It is dependent on
frequency v, coordinates of point P, and on time t.

With absorption, radiation energy is transformed into thermal mofe—
ment of elementary particlss.

Coefficient of Dispersion. Pure dispersion is linked with redis-

tribution of the intensity of radiation by directions without change of
frequency. Decrease of intensity due to dispersion on a small segment
of a path of a ray passing through a material medium equals:
pad,ds. (?)
Here, dv is the mass coefficient‘of dispersion. It is dependent
on frequency v, coordinates of the point, and on time.

Indicatrix of Dispersion. The distribution of intensity of dis-

persed radiation (7) with direction s in all possible directions s' in

any point in a moment of time t may be described by the function:

_41;7'([)- t s, §'), (8)



bearing the name indicatrix of dispersion, function of dispersion, or law

of dispersion. With the aid of this function, the expression
- l "
PSS g (P, & s, §')dQ' (9)

may be treated as that part of all dispersed energy which by the act of
dispersion is deflected inside of the s0lid angle df¢ in direction s'.

This function, apparently, satisfies the condition of normalization
T‘n-f-;,(P, £ s, s)dQ =1. | (10)
4=

The speed of diffusion of radiation energy will be considered equal
to the speed of light ¢ in a vacuum. In the time dt, the energy passing
through the ground do in a given direction s fills a volume

dv==d3cos (n, s)c-dt.
The density of energy will then be equal to: |

dE, 1 :
| 5, * dv‘= = =1, dvdQ.

If we consider rays of a given spectral composition, going in all
possible directions, having integrated the last expression in all direc-
tions, we will then have the density of energy of frequency v in a given

point P in a moment of time t in such a form:
1
(B‘dv.-:—c—fl‘dVdQ (ll)
i

Summing up this expression in all frequencies, we obtain the inte-

gral density of radiation energy

1
= [ 142, (12)
) i
For isotropic radiation we obtain:

“B‘=‘_¢—-l" ‘B='=""'I' (13)

Each photon carries energy hv (h -~ constant of Plank, v - fre-

quency) and impulse hv/c, so that with the transfer through ground de¢

. :



of energy (1) is carried also the impulse

~I,dvds3 cos (n, s)dQd

in the direction of diffusion (direction s). Compilation of this impulse
along direction s8' equals:

—:-l; dvds bg;os (n, s) cos(s’, s) dQ dt.
Integrating in all directions s, we obtain:

-}.— dsdt f 1,dv cos (n, s)cos(s’, 5)dQ. (1i)

[ 13

The tension at point P, arising due to radiation transfer, is the
speed of transfer of the impulse, related to a unit of area, through an
infinitesimal ground constructed around point P.

This magnitude depends on the direction of the normal and may be

written as

. Z’xm dv =Z‘° (@ puddn (15)

w 2

.)) is the tensor of radiation tensions (orthogonal symmetri-

where ((PRviJ

cal tensor of the second rank), and E° is the unit vector directed along

the normal. Compilations of the tensor ((P )) are obtained in the

Rvij

Cartesian system of coordinates from (14) in the following form:

Prag=— [ I,cos (s, 1) cos (s, /)dg, (16)
[ 1] . -

where i and j = x, y, and z. The minus sign corresponds to the com-
pression of the selected volume by the outer radiation field.

For the entire spectrum we have:

. 1 S '
: pB‘J =---c-flcos (s. ‘)‘CDS (S. j)dgn (17)
L = . . '
where
: Priyy= fp“'“dv' (8)
Q



For isotropic radiation

PR“1=0. l‘#j;

- . (19)
P T T AT (20)
The sum of diagonal components of the tensor ((PRvij)) equals,
apparently,
2 Ppu= (21)
If we introduce "hydrostatic" pressure
Pp=— ;‘; 2 va“'.‘ ; (22)
we obtain: B N -
ﬂh==:§1': (23)
and also - 1
Pe— 5 (24)
For isotropic radiation
| PRw="Pr¢ Pru= " Pp- (25)
The introduced concéﬁés and correlations are sufficient to describe

a radiation field of a moving medium and to compile a system of equations

of hydromechanics with calculation of radiation.

An equation of transfer of radiation describes the change of in-

tensity of radiation with diffusion of a ray of frequenc¢y v in any di-

rection s. We will select in this direction two points P and P', being

separated one from the other by a distance ds. We will construct around

the ray s a right cylinder with bases passing through points P and P',

In the time 6t through the ground containing point P, inside of

the

cylinder in the direction s inside of the solid angle 4R passes the

following quantity of radiation energy (element of energy):

3E,=1,(P, t; s)dvdQdadt.

This element with a speed of light ¢ will move inside of the cylinder




if will go out through the other

and in the integval of time dt =
base of the cylinder; whereto, the gquantity of energy inside of this
element is changed as a result of radiation, absorption, and dispersion
by matter along the ray s and will equal upon exit from the cylinder:

.' “'E ==l (P’ t-l-dt s)ddedc&t

Increase of energy .
L aE, =( LUCULIPR +"’*"”' ) dt)dvdgdaat.

with precision to an 1nfin1te51ma1 magnltude of a higher order is made

up of radiation in the given direction s:
pn, dvds d3dQdt,

of weakening as a result of absorption and dispersion of energy from a

given direction to all sides inside of the cylinder:

p (a +:x,)l dv ds ds dQ ot.
of increase due to dispersion in accordance Wlth formula (8) from other

directions s8' in the glven direction s:

-——-—ps dvdsd:fl(P ¢ s')-{,(P t; s, ') dQ’ dQ .

Combining all these additlons together and equatlng thelr ¢"E, we obtain

after cancellation by dvpdsd:dQ&t the sought equat10n°

' -

1 a1, 1 d/, ’
7W+ pc Ot g - fl(P t s, (Pt s, §')dR — (a,~-3,) [y (26)

For a statzonary radiation fleld the second member in the left part of
the equation disappears. In some cases it may be discarded, con51der1ng
it small in comparison with other members, because of the smallness of
the multiplier —%—. If pure dispersion is not considered (av = 0), then

for a stationary instance equation (26) assumes the form

(27)

> ds "l"'"‘“Jv "f




In this same form may also be written the equation of transfer of radiation
with calculation of dispersion, but then it is necessary to somewhat dif-
ferently determine coefficients @, and “v' whereto "Q' in generai, will
depend on direction (see Section 3).

Influx of Heat Due to Radiation. We will choose a surface X with

a volume of matter Te The influx of heat due to radiation in the ele~
ment of mass pdT during time dt will be:

ppd.

Having summed up this expression in accordance with volume T and
having equated obtained differences of increase of heat in volume T due
to absorption and diminutions due to radiation (dispersion of components
will not be given), We obtain the expression for specific influx of heat
aR in the form

o0 . P
q":,fa'd' f"‘.’g—""’“ a= [ ndv. (28)
L] [}

The guantity of radiation energy which will be introduced in a
unit of time inside a surface X in all frequencies, may be determined
by summation of expression (1) for all frequencies, directions, and for
the entire surface, We obtain:

— [ Har==— [ dvH s,
1 . L .
Going on to the limit with T - O, we find the magnitude of influx of
energy due to radiation as related to the unit of time and volume:
- >
pQR=—diV H. (28')

We multiply (26) by dSldv and integrate in all directions and all

frequencies, and we have

%-dlvl?-i—-:-%z‘f-:;ttm-fa, av [ 1,48. (29)
. : [ 4in
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Comparing this with (28), we obtain another expression for magnitude of

specific influx of heat:

. _— 1 > 1 a‘R

=y dvH— o . (30)
Utilizing this equation jointly with (28'), we arrive at the correlation:

de
PQR.=NR +_'5:!—1

i.e., the radiation energy flowing into the elementary volume of the
medium goes partly to heating and partly to increase of demsity of
radiation energy in this volume.

For isotropic radiation, H = 0, and therefore

o ] dep
Q=0 gp=—17-

If the radiation field is moreover also stationary, then

qR=00

.

Section 2. Common Egquations of Movement of a Material Medium

with Calculation of Radiation

A system of equations describing movement of a solid medium, namely:
an equation of transfer of a guantity of movement, an equation of trans-
fer of mass, and an equation of transfer of energy, is worked out on
very common assumptions and allows various processes inside the medium,
Specifically, it is used for description of movement of a so0lid medium
with calculation of radiation, i.e., in the radiation field, if only the
magnitudes which enter into it are determined in a corresponding manner.

l. An equation of movement of a s0lid medium in tensions with calcue

lation of radiation is not distinguished in form from an equation of move-
ment without calculation of radiation:

= div (P, ()

11



with this there are only the differences that with the tensor of ten-~
sions ((Pij)) should here be understood the sum of two tensors: the
tensor ((Pij)) of tensions of a so0lid medium and the tensor of radiation
tensions (PRij)): |

(P =(P) + (Preg))- (2)
Other symbols have their own usual meaning: p - density, 3 - vector of
speed, and its projections L uy, u, oz g'- vector of mass strength; i
and j = xy ¥y Zo Ordinarily, the tensor of tensions in a viscous fluid
is presented in the form of the sum of the tensor of hydrostatic pressure
and the tensor of viscous  tensions:

«pip) =-—p (O I (A (3)

where ((6i )) is the single tensor, so that

J
Py=—p+%; if {#J.
Py= -
In precisely this same way we may also divide the tensor of radiation

tensions into two parts:
: «pgu)) =Pz ((sq» +((tg‘ ‘»;
!
"‘Pg‘*‘tﬂu' t+J (&)

|
Rif 13‘1"‘—1]

the first tensor corresponds to the isotropic radiation field, and the

second to oblique radiation tensions if we assume [4]:
A=1I,41, (5)
where Tv is defined as the magnitude of "output":
- ] . .
Iy=p [1,d2=tmcg,. 6)
4% .
Substituting this in (12, section 1), we have,

zw=—-l-‘f7,cos(i. sycos J, s)dg. (7)

12



If we multiply the equation of transfer of radiation by the cosine

(i, n) dvd and integrate with all frequencies and directions, then we

obtain:
' LM e f |
' div(((l’gu))?-—'g-di!—% (2,0, H,ydv—
[}

1p » ‘ -
"Ff‘of oydv [ cos(s, hag J 1P & 1, & s, 5 ag. 8

. " 4% 4n R

For isotropic radiation

qiv «pgq» =0. ‘ (9)

For a viscous fluid, components of a temnsor of viscous tensions
((Tij)) are expressed in hydromechanics by components of a tensor of

deformation in the following form:

: > .
S { —p-tAdivd{2pe, (10)
A e
where 1 f0u; | Ou,
| u=7 (G +57),

¢y, A = coefficients of viscosity.

2, An eguation of conservation of mass, if limited to cases in

which in the considered field sources and discharges of mass are absent,
also maintains its usual form in calculation of radiation:

FFeavi—o. (11)
If there are sources or discharges, then in the right part should be

supplied the power of the sources (discharges).

3. Equation of energy. We select in the stream of fluid some

volume T, limited by the motionless surface L. We apply the law of

3=
e

conservation of energy to it. The expression of kinetic energy o] ds

of a particle of fluid is not changed by the presence of a radiation

13




field in our statement of the problem. As regards internal energy, by
internal energy of a particle pedT should now be understood the sum of
internal energy of considered movements of elementary particles (mole-
cules, atoms, etc.) € and of energy of radiation €R? whereto €p will be
related to the unit of mass and ep We previously related to the unit of
volume, and therefore:

°==‘T4‘%?“ (12)
To the element of surface do are added surface forces, tension of the
main vector of which 3; will consist of the tension of the main vector
of surface forces due to internal tensions of the fluid, i.e., due to
transfer through the surface of elementary impulses by elementary parti-
cles of fluid, and of the tension of the main vector due to radiationmn

tensions - due to transfer of impulses by photons, i.e.,

.

Pn=;»+;3n * (13)

We will consider the work of mass forces, and also the influx of
heat due to thermal conductivity and radiation transfer of energy.

By the usual methods of derivation of an equation of energy (with
utilization of an equation of movement and an equation of indissolubility)
we obtain:

dt -
P =div(hgrad T)divH =5=

where
m= 2 Pyey, - (15)
s.J
# == coefficient of thermal conductivity.
1f (3), (4), and (12) are utilized, then (14) is rewritten as:

4
dep Ptacm 4 ' -
p_a.i_.{.-a.‘fl————-——--d—:-—div(kgrad T)-i’—dlvH—-&Ir=0:

q’=sz;(7"'+1“") Iq‘

14



If ¢ = O, vectors of degrees T,2», and H are parallel, and mass
forces are conservative (F = degrees U), then for stationary movement
may be obtained the first integral - the generalized integral of

Bernoulli:

"+331d1'

2'+"——U+ % ds+pH const (17)

the right part is constant along the line of current.

The system of equations (1), (11), and (14), if usual hypotheses
concerning the relation of a tensor of tensions ((Pij)) to a tensor of
speeds of deformations ((eij)) are introduced, in general proves to be
open. In addition, it is necessary to enlist a thermodynamic equation
of the state of matter. Considering all coefficients which will be
figured in the equations (coefficients of viscosity, coefficient of
thermal conductivity, etc.) as constant or as known functions of varie
ables already introduced into the equation, we close the system if radi-
ation is not considered. In calculation of the latter, a number of other
magnitudes appear, but all of them, as was shown above, may be expressed
by intensity of radiation Iv' Including in the system the equation of
transfer of radiation (22, section 2), we introduce a number of new
magnitudes: o ﬂv, o, Yy°

Part of them we consider known functions which may not be determined
by hydromechanical methods. To them are related dv’ ﬂv, and Yv; as re-
gards the coefficient of radiation nv' it is an unknown function and for
- its determination an additional correlation is necessary. In the quality
of such a correlation is usually taken Kirchhoff's law.

= B,, (18)

where Bv is the function of radiation of Plank, or in the integral form:

U __ e
T=8=T. (19)

15



The latter.formulas are justified, strictly speaking, only in a case of
thermodynamic equilibrium and may be used in those problems of hydro=-
mechanics in which the hypothesis concerning local thermodynamic equi-
librium is justified. There may also be obtained other correlations
describing the state of radiation which may be used when Kirchhoff's law
proves impracticable [1].

Section 3. One-Dimensional Movement of Radiating Gas

For one-~dimensional movement, the system of basic e
significantly simplified.

We will consider that movement of a material medium in a radiation
field occurs along the direction of the system of radiation, i.e., along
the gradient of temperature. We will assume that all characteristics of
the gas and radiation field depend on only one coordinate x and in the
case of non-stationary movement - also on time t. Thus, in each point
of any plane perpendicular to the direction of the speed of current, all
radiation and hydrodynamic magnitudes will be considered completely
identical. Only one magnitude will depend on direction, namely - spe~
cific intensity Iv' Considering the medium, thus, as flat-stratified,
we must assume as a valid symmetry also its axis symmetry relative to the
radiation field, i.e., consider that the intensity of radiation depends
only on one angle & formed by a ray with the direction of speed of move-
ment of the gas, and does not depend on the other two angles (or other
two guiding cosines). If we consider only the radiation of the medium
itself, considering there is no radiation from outside sources, then
for a one-dimensional problem and for a homogeneous medium, the observa-
tions made follow as they are. This remains justifiable also in that

case in which there is an outer source of radiation but the stream from

16



-it is directed along the vector of the speed of movement of the medium.
Non-diagonal components of a tensor of radiation pressure in the
case of movement along an axis x become zero:
pB"’=0' i:#j'
From considerations of symmetry
pBut:_pR'lﬂl'
In addition, we have:

Hy= Hy=0 Hy=H;

g -
¥ 13

In an equation of transfer, instead of differentiation by direction
of the ray s it is now convenient to introduce differentiation along
axis x, having utilized the equation:

é 0
E—cosﬂ ox "

The basic system of equations is written in this particular case as:
L =Xt g Pent Presd

(1)
dp _ ou .
=P oxd (2)
ds g =Pz PRzx d dT
T R R rx 'Rxx P___=
2 tar P dx( H) (3)
1 "’+cos0 =p'q,+p4 f/ P, & )0 (P, & s, $)dR—
"'(“ +°v)’ _ (4)
If the movement is stationary and if mass forces are conservative
dUu
X=a (5)
then the system allows the first integrals:
u==m,
y . L, ul Pp +p ., dT (6)
R U T2 Raz\ ° —
”‘('z"‘*"?"’u"“i"" 3 )+H"_k7§_l' (7)

If U = O, then system (1) - (3) is reduced to the following levels:

| o B (8)
Pugt Proy—mu=n; (9)
dT : i
b e ) B 0o

m, n,z — {constant integrations).

17



If the radiation field is stationary or if the member %g&. is dis-

regarded, considering it small in comparison with others, then the equa-

tion of transfer of radiation (4) for one~-dimensional movement is re-—

written in the following form:
cos® o/, hE ~

T o = h ‘ (11)
where B : " *v==¢,4—°v
=Dy % . N (D 4 Ny
h= 2+ m‘“fi,(P. & ) 1.(P. & s, §')dQ’, .

Jv - the function of radiation, determines the quantity of radiation
energy emitted by a unit of mass by way of radiation and dispersion; in
general, it depends on the coordinate x, direction (i.e., on the angle
-9), time t, and frequency ve If the indicatrix of dispersion does not
depend on &, for example in the case of isotropic dispersion y = 1), or
if dispersion is not considered (dv = 0), then Jv does not depend on
direction.

In mean form by frequencies, equation (11) is written in the form:

cos § o/ : ’
o =I—1 (13)

18
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If the temperature is so high that complete dissociation of molecul es

has occurred, then the internal energy of the gas will consist of energy

2
3

of the now monatomic gas (y = ) and energy of dissociation:

where Ud is energy of dissociation in calculation for one mole.

We will consider monatomic gas in more detail. Let us assume that
the temperature was sufficiently high that ionization had vital importance.
The medium in this case will be considered a mixture of three perfect
gases; gas consisting of neutral atoms, gas of ions, and electronic gas.

Two processes lead to loss of electrons by atoms: thermal ioniza-
tion produced by collisions of atoms with free electrons and also with
atoms and ions, and photoionization, which is produced by light quanta
(photons) extracting electrons from atoms. Simultaneously with processes
of ionization must also occur processes of recombination of ions and elec~
trons into neutral atoms. Herewith, the surplus of energy either gives
itself up to some third particle or is emitted in the form of a light
quantum. Photoionization has predominant importance at very low pressures.

At normal and very high pressures, as a problem concerning an inten=-
sive compression wave, thermal ionization predominates. But the latter
form of ionization we will consider in the future.

Common correlations for ionized gas may be obtained by methods of
elementary thermodynamics, considering ionization as a series of chemi-
cal reactions, as well as by methods of statistical physics.

We will assume that in every point there is ionizational equilibrium

and that each free particle of gas possesses energy -%—kT and impulse kT,

as follows from the kinetic theory of gases. In a case of thermodynamic

20



equilibrium, the pressure of gas equals:

p = NkT,
where N is the number of elementary particles in a unit of volume, and k
is the constant of Boltzmann. As long as all particles are independent,
the pressure of the gas will consist of the sum of partial pressures of
electronic P+ ionic P, and atomic p, gases.

For determination of pressure it is necessary to calculate the con-
centration of neutral atoms, ions, and elecirons dependent on temperature
and density of the gas. Increase of the temperature of gas gives rise
to not only increase of the degree of ionization (concentration of elec~
trons), but also, generally speaking, to excitation of deeper electronic
levels of neutral and ionized atoms. We will designate the number of
electrons in a unit of volume of gas of given conditions by n, the number
of neutral atoms by n_, and the number -times ionized atoms by n_, where-
to r, apparently, may in general change from 1 to]{, wherejE’is the ordinal
number of the element in the periodic system of Mendeleyev, and the number
of ions n, will equal Enr. The total number of particles in a unit of

r
volume will equal:

N=n,~+n,~+n,,
accordingly, the pressure of such a gas is expressed by the formula:
P#(".+na+n“)kT. (1)
Let us assume that conditions are such that only single (one-time)
ionization takes place, i.e., only one outer electron or none is torn
from the atom. This may be assumed by reason that the energy of the
disengagement of the first electron is always significantly less than
the energy of the disengagement of the second electron, and appreciable

double ionization may occur only after nearly complete single ionization,




Designating the total number of atoms in a unit of volume by No’ we obtain
for single ionization:

’ P=(142)NiT, (2)
where z is the degree of ionization, i.e., the number of ionized atoms
relative to the total number of atoms. Multiplying and dividing the

right part (2) by the mass of the atom m_, We have

p==2 (12T, (3)
or
p=(142T,
(4)

where P = Noma, i.e., the mass of the electron as compared with the
mass of the atom is disregarded, Ro = X is the universal gas constant,
by is the atomic mass of non-ionized gas relative to hfdrogen. and m,
is the mass of an atom of hydrogen.

Internal energy resident in a unit of volume will be comprised of
kinetic energy of translational movements of elementary particles —%—kTN,
energy of ionization, and energy of excitation.

For ionization (r = 1), a single time of an ionized atom requires
work equal to r-that potential of ionizationjfr, and for ionization of
n _ atoms, work required equals nrx;. But to the extent that each of the
ions entering into n. is considered subsequenfly to be ionized r time,
then to these atoms must be ascribed the energy of ionization mé%x, R
and all the energy of ionization in calculation for a unit of volume of

gas will equal:
Z(MEX‘)- (ka)

The energy of excitation in calculation for ome particle is repre-

sented by the formula known from statistical physics:
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‘Tﬁ_f (5)

where ur - sum by states

(6)

X is the potential of excitation of a particle of the type r in the

given case of a r time ionized atom being in a quantum state s (ascrib-
ing to the index r the value O, we will consider neutral atoms), and

g,. . 18 the statistical weight. Summation is conducted by all quantum
L,U

states of the particle. The energy of excitation of all atoms in a unit

of volume will equal:

o =”T’2 ro«lanr"': (7

"=°
Adding up (4), (5), and (7), we obtain the volumetrical density of the

complete internal energy of the gas‘

_—NkT—‘—Zﬂ,Z /‘+k7“2 'B‘I’l;.u,. (8)

rat $=1 r=0

For once ionized gas we obtain:

e O R O & Y

which may also be written thus if the right part is multiplied and di-
vided by the mass of a neutral atom of the considered gas and it is

considered that N m = p:
o a

G=gr R Attt r{a—a T2 o)
The mass density of internal energy will be:
. _2&(1+z)r+z"+k"7’*{(1—:)‘”““"—{- 2254 (11)

The potential of ionization 7& is a magnitude which is constant
for a given gas and is determined experimentally.
The entropy of a unit of volume of ionized gas is obtained in this

form by methods of statistical physics:
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3 3

: n ’
=3 \ @xmqkT)*® dina, T
8_35N+an,[ e+ 1 ““]-{-k @%1;)__2 (12)

r=0

In the last item, instead of a sum by states was introduced the statis-
tical weight of an electron equal to two.
We will also write an expression for the thermal function W and

free energy F. Utilizing the known thermodynamic equations:
W=er+ pu;

F=¢p— TS.
we have:

W=7 kr+z, Ly.+m2‘ RLLY (13)

r=1 f=1 N r=0

'\ . , 'F'—————NkT-]-En,Exl—

r=1 f=3
3 3

— z[ ,(2nmakr) a,] ki, In (2um,k7')’2 (14)

ngnd *
r=0
In a state of equlllbrium. free energy should attain a minimum of

dependence on parameters determining the degree of ionization, whereby

oF
an, =0»

or, differentiating (10) and taking into consideration the condition of

the electrical neutrality of the gas as a whole.

‘ny —-:Lrnﬂ

r=1

we obtain an equation determining the concentration of ioms:

’/ .l 2
n,.n: —u, (21!”1;::7) ] {2 (2xr;::k7') '}

or also in the known form (formula of Sakh):

. X
";‘+l p,==lri1 g (21:m,k7‘) kT --—;%‘- (15)
r ay ’

where Py = nekT is the partial electronic pressure.

For single ionization, equation (15) takes the form
3

u (2=m kT)E _ T
Zug L) pmuikT, (16)

22 S—
l—z.p_u
Other therﬁod&namic magnitudes yay also be determined, for example,

specific heats cp and c speed of sound, etc., but we will generally

2L



L

not do this and will consider these magnitudes only in the case of single
ionization.

Excitation of atoms may not be considered with a great degree of
accuracy ([5], page 332) and it is considered that all atoms and ions
are in a normal state. As a result of this, the preceding formulas may
be simplified. The sum by states for neutral atoms and ions may be re-
placed by constant magnitudes - statistical weights for basic conditions:

Ug= gy U, =g,

and for single ionization we will have:

3
€= NokT (1 4 2) 4 N2y, : 17)
z 8o
s—“Nok(l+z)+kNo(1—z)'"'(—2—ﬂg%%;,;r+
' 3 3
. /+kN@ln_(2.'m_‘;$:’%_g_“_+kNozln(2L:’;v€;hnTR_g. ) (18)
W=—gNokT(l+z)+Nole. (19)

3

2 akT a
F==—-Nok7‘a+z>+Nom—kN(l —2)in Grmet e

. (2rmgiT)? 2rmokT)3 2
— kN In —W kNozln—(—ﬂzl%z—-, (20)
8
B o &uo (2xmkT)* AT -5
_z -——i‘a—_e

~ ‘ : l—z'lp

or .

. 3 i

3 2 L < i
e A @)

3

l
where constant wy= gg:‘(—z“—mh—;-g-mg.

I

Let us now find thermal heat capacity at constant pressure. We

will proceed from the thermodynamic formula:

= (2%
»=a7),

We have in force (19):

Ac,-=% (1+z)+N,,kT( +45 )(g;.,. (22)
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dzy -
We determine the derivative (gfL from formula (21), having taken from

the left and right part its logarithmic derivative. We obtain:

z(—l'z—?)(g_;‘) | _;"(2 +7‘)

Substituting the derivative determined by this correlation, in (22),

we find the value of the specific heat at constant pressure, relative

to the unit of volume:

-

c«’=

Ve

1—
(1+2)N0g+ﬁ2_.32(5 :}‘..)’Nek (23)

or in calculation for a unit of mass of gas:
_[5, z0—25/(5 , % :
Cz“[ﬁ“"_-‘"ﬁ‘—(iﬁ-ﬁ)](l-i-.z)%. (24)
For determination of specific heat of gas with calculation of

ionization in constant volume (density), we will proceed from the form-

aa
Formula (17) gives: RN
RO R -

From formula (21), utilizing equation (2), we have:
A (8, 53+ B
which together with (25) leads to the expression:
=g U+ DNp+ 202 (3 Aoy, (26)

or in calculation for a unit of mass:

& __{ +(2-z-(zl)_(;iz)(z )}(l+z).' (27)

The ratio of specific heats:
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_g_+z(l—z) (%+%)z

z(l—2) 3, 4\? .
T+ mare () (28

[4
'r=:-—£==
Co

We will now determine the adiabatic speed of sound in gas with

calculation of ionization, for which we will take, as usual, the magni-

the derivative is taken with constant entropy. We will write the condi-

tude:

tion of constancy of entropy in the following form:

ds = O,
whereto here, instead of entropy S relative to a unit of volume, we will
take entropy & relative to a unit of mass, and apparently:

5 = S/0.
Equality (18) will give:

a +z){’,l'+(%+%;=)dz—(1 +2) 2 =0.
Further, taking 1ogarithmi; derivations from (21) and (3), we have:

3

L4 __ u\ 4T,
+z(l—z) dz = (_+_k—‘7‘ T
dp‘ dp
e -+ - H—z + 4 T '

from which together with the preceding formula it follows that:

p_ Ste—a(y+)

A= (29)
3 —
a(z+££‘_2_i)_)+,u_z)_(%+ %
Equating (29) and (28), we may write:
; . »
=@—a0+2 7fjﬂ:’ (29")

All formulas of the present section are at once converted into
ordinary thermodynamic correlations for monatomic ideal gas if it is
assumed that z = O (non-ionized gas), or z =1 (gas completely ionized),

or if in general it is considered that z = const.
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Further on we will consider a stream of monatomic gas in those con-
ditions which may be limited to calculation only of single ionization.
The equation of state may be taken in the form (4), and the expression

for mass density of internal energy will be written thus:
3 Re Xy
8T=—§--|;K-T(l +Z)+-”T‘;Z. (30)

In these two correlations, a function of the state of the gas
entered - the degree of ionization z, which we will determine with the
aid of equation (21).

Thus, in all our reasonings, we consider gas ideal in a thermo~
dynamic relation, but we take into account its own kind of chemical re-
action - ionization, which takes place in a considered gas mixture.

Section 5. One~Dimensional Movement with Influx

of Heat Due to Radiation

In this section is considered the simplest problem of hydromechanics
with calculation of radiation, namely: stationary rectilinear movement
of ideal gas. For simplification of the problem, thermal conductivity
and viscosity are disregarded.

Gas is considered monatomic so as to make it possible to not con-
sider dissociation of molecules at high temperatures, and also so as to
not calculate the coefficient of absorption in regions of a molecular
spectrum. In addition, we utilize the hypothesis concerning local
thermodynamic equilibrium, i.e., we consider that although the tempera-
ture at various points of the stream varies, at each point there is
equilibrium of all the considered processes in the temperature peculiar
to this point. This spares us the necessity of considering the time of
relaxation (for example, of the process of ionization). Single ioniza-

tion is considered.
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In parallel are adduced results for homogeneous gas, i.e., for ideal
gas [6], the state 6f which throughout all regions of the flow of gas
does not change (therein, for example, the degree of ionization). Cor-
relations for description of radiation are taken in mean form by fre-
quencies and by directions, whereby dispersion will be disregarded.
Temperatures are considered to be not so high as to consider mechanical
action of a radiation field (1ight pressure), and speeds not so great as
to take into account relativity effects.

We will consider justified for our case Kirchhoff's law (19), sec-
tion 1). |

The system of hydrodynamic equations (8) - (10) section 3 take the

form:
pu=m,

pmu=a,

ms gt — 2 H =, (1)

Here it is also necessary to add equations (17), (30), and (16) from
section 4, and also the equation of transfer of radiation (13, section

3). Assuming that there is approximately fulfilled the equality:

[ 1cos30a = [ 140,
i i )

equation (13, section 3) together with (15, section 3) may be reduced to

an ordinary differential equation:
dzH H 878 dT
+

a® | o« dv . (2)

1 :
o is the constant of Stephan - Boltzmann a°=-1’1—5:' ;=§-, o« There exist

other methods of averaging which also lead to equation (2), but with

2 2
other values of o, and a"). Thus, according to Mustel' [7], =73 ¢$=§';

. ' 1 1
and according to Schwarzschild, %=7, “.',==-2'-:



We will intyoduce the unmeasured variables:

=l r=l, gt =L,

T p= [ u=“1' Te= i

He=r =g '
14y - 1.

where by the index 1 are designated values of variables in any point

T = T
1°

pressed by one of these in an unmeasured form, for example, by unmea-

All functions entering into systems (1) and (2) may be ex-

sured speed ';, which is equal in force of an equation of indissolubility

to the value of the unmeasured specific volume v = -—:;— H
- 1
p=u~t,
;=q1(p1—;)'
T 1+1 ql(ﬁl u)u, 1 (l(')
H 2(a—1)(u—ﬁu)+?;(21—2)+ﬁx-
(Bx—u)a—i—ﬁaz
For a homogeneous thermally and calorifically perfect gas (eT = cv‘r,,
c

p = 2 pT, 2 = 2.1 = const, a?' = Y—B-_-,’ Y = —p-, wherein ¢_, Y, R are cone

3 p .y v

stant magnitudes) the last three equations of the system (21) take the

form:

e

‘h(px—“) u,

= ;;",‘ (a—-l)(a-—,‘l,,)-{-H,.

H:z ~n

(&)

In equations (4) and (4'):

T W S (5)

2
whereto for monatomic gas ¥ = —g-. Forr homogeneous gas q = YM].' where

Ml is the number M for conditions of flow at point 7T = T e




For the degree of ionization z, from (16, section 4) we have:

) 3’(l+z) . 8 5 _B(i+n)
1=z o(ﬁ '—")z uie "(ﬁ.—u) 6)
. . .
here R} .
g =(l+2)’q : 25“ (2"'"%;‘1)‘ kT,
1

Placing (4) in (2), we obtain the fundamental equation of the problem:
a‘d'tl+ ( )+ald.; +ac'—0 (7)

-~ [
— 5
where ay=uy—f— % = “=—8—B"

— (By— u)3 B 1 u(—a) dz
= 98, (Bi—u)ud {
Pt (e =B+ S b .m)

| “4=——7[(u-—l)(a.—ﬁu)+%(zx~—'z>+%ﬂl],
2T! o
3:-—-‘.05 Sy gL (2
(for. homogeneous gas, in the first part of the expression for EZ, ine

stead of the coefficient 2 is entered 8 3—:—%).

If we introduce a new unknown function

y= (8)
then we obtain an ordinary differential equation of the first order:
1.v—+aay’+nay+a.=0 (9)

This differential equation has the integral:

d=a*=3, + ﬁs (10)

and six special. pcints. Two of these lie on the axis y = O:

~ ] I
Point A’ de= 232+1/-T(l_pn)2+%5_(zA 1)'——._—' (11)
~ 1 i H,
Poiae 3, iAoy T E G- G2
where z, and zp are values of z with corresponding values of Y. These

3



points correspond to stationary values of the function 3’(7), i.e., to
conversion of acceleration to zero, and are saddles according to the
classification of Poincare [8]. 1Integral curves in the vicinity of

these points have the form:

1,

N—wk=C|n—wi|w, (13)

where - 1 a: - 1 ag 3 1
Wy =< e e e T —— 1 — —
_ 1 2 & ; 4 (a':) +a§

(zeros on corresponding symbols designate that their values are taken
at special point A or correspondingly B), and two integral curves
n=wl m=wyt (14)

pass through special point A' (correspondingly B)e.
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[Translator's note:

Page 101 of original not available],
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eeee Investigation of the structure of a shock wave in this case should
be done with constant values of all physical characteristics entering
into fundamental equations describing the process (coefficient of viscosity
and thermal conductivity, specific heats, etc.). Then there may be a case
in which a change of conditions in the gas produces physical and chemical
reactions in it (for example, excitation of rotary degrees of freedom in
the gas and thereby change of specific heat). But these reactians may
occur quite slowly as compared with the speed of compression of gas in
a shock wave. Then, the entire process may be divided into two stages:
at first occurs the compression of gas without calculation of a reaction
which interests us, and then a reaction occurs in the gas compressed by
a wave. If the speed of the reaction is sufficiently great so that in-
side of the compression wave it succeeds in being substantially manifested,
then investigation of the structure of the compression wave should proceed
from calculation of this reaction. It becomes necessary to consider re=-
laxation processes and to enlist laws of chemical kinetics. Calculations
become very labor-consuming, and from ordinary gas dynamics it becomes
necessary to go far into the field of statistical mechanics and kinetics.
Investigation is significantly simplified if the hypothesis concern-
ing local equilibrium may be utilized; i.e., if it is assumed that at
each point at each moment of time there is equilibrium in temperature
and pressure peculiar to that point and to that moment of time for all
processes important in the problem. Such calculations represent an in-
vestigation of a maximum instance, and sometimes may give an approximate
picture of a phenomenon or in any case a qualitative representation of
the structure of the wave.
In an ideal (in a hydrodynamic sense) fluid, the compression wave

is a geometrical surface devoid of thickness, and a corresponding

*




hydrodynamic problem concerning the internal structure of a wave leads

to a system of algebraic equations, solution of which is the correlation

of Rankin-Hugoniot. 1In a compression wave, temperature, pressure, density,
etc., change intermittently. A model of a perfect non-viscous gas with
constant thermal heat capacities cannot even qualitatively reflect phenom-
ena taking place inside of a compression wave. If then are introduced
into these equations members containing derivatives, then it will be pos-
sible to obtain a continuous change of mechanical magnitudes characteriz-
ing the stream. This may be done by way of calculation of viscosity and
thermal conductivity [9]: in the first integrals of the fundamental sys-
tem of equations enters the derivative du

dx

cosity, and the magnitude %%} characterizing transfer of heat by way of

» due to work of forces of vis=-

thermal: conductivity. Continuwous solution is obtained in that case if
transfer of heat with the aid of radiation is considered, since corres-
ponding dependence introduce into the system of first integrals differen-
tial correlations even if viscosity and thermal conductivity are disre-~
garded.

It may be said beforehand that if a weak compression wave is di ffused
in gas under ordinary conditions, then effect of radiation on the struce
ture of the wave is so small as to be disregarded. If however the com-
pression wave is very intensive, which is accompanied by strong heating
of the gas, then radiation begins to play an important, and it may be
under some conditions, dominating role as compared with viscosity and
thermal conductivity, since, generally speaking, transfer of heat by
thermal: conductivity is proportional to the gradient of temperature, and
radiation transfer of heat - to the gradient of the fourth degree of

temperature., Further on we will consider such a case as is applicable
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to non-viscous and non-heat-conducting gas as set forth in the preceding
section. 1In practical computations are utilized the formula of Sakh for
determination of degree of ionization and the formula of Chandrasekar
for computation of the coefficient of opacity.

We will limit ourselves to study of the structure of a plane com=-
pression wave. The problem leads to investigation of equation (8) of the
preceding section with the following boundary condition:

x==30c0, y=0 (=), (1)
i.e., we will consider that the stream extends on both sides to infinity,
and that at great distances from the beginning, derivatives of all vari-
ables (p, p, Ty u, etc.) in accordance with x (correspondingly in ac-
cordance with T) become zero. Moreover, insofar as in infinitely dis-
tant regions T = const (thermodynamic equilibrium), then here the radi-
ation should be isotropic, as a result of which

Hpms o =0. (2)

Let us assume that movement occurs on the side of the positives x.
We assume o= -®, We designate the values of thermodynamic values in
point T = +» with the index 2. From (1, section 5) we obtain the cor-

relation of Rankin-Hugoniot for a compression wave, and solving those,

for example, relative to Bé, we find the equation of shock adiabatl:
- ‘1 44py
Pa N fa—z ! (3

P29 T
which converts to the ordinary equation of adiabat of Rankin -~ Hugoniot

for monatomic gas if the gas is homogeneous:

~_144p :
Pg 4+ 75 (3")

1. For a more general case in which is considered mechanical action of
radiation and there are no means by frequencies and directions, the de-
wmand of presence of thermodynamic equilibrium in infinity leads to the

terms:
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Equation (3) differs from equation (3') by the presence in the denominator
of a member dependent not only on 5% but also on the initial state of the
gas (initial temperature and pressure) and on physical properties of the
gas (atomic mass and potential of ionization). For a compression wave,

always z., 2 ) s and moreover (xl/le) > 0, and therefore adiabat (3) lies

2
higher than adiabat (3'), having with it two common points in Sé - 1 and
in 52 - ®», Between these points lies one extreme (maximum) of the func~
tion Bé(ﬁé). If we take into account repeated ionization of complex
atoms, then the number of such maximums will be equal to the number of
considered degrees of iénization.

We may write the dependence of all other magnitudes on ﬁé (Figures

3 to 5), for example:

. - L 23—2
~_l+zl4+p2_2_ L

7, kT 14z,
142z 1+4p; ' (&4)
— (Pr—1) (1 +42) ;
o 3(p—1)—o-f 23—z’ 5y J
le li—:l.l _:[

or on any other parameter, for example, on the number Ml' i.e., on the
number M in a medium undisturbed by a wave, as related to the speed of

diffusion of a wave (Figures 6 to 9).

) S . R aT': '

X = — 00, Hﬂ::Hz:O. p8u=—'_3 =__§_;
g _ aly

x=h+01 H;ﬁ:H;:ﬂL PB =“_—§q=_§_.

Proceeding from equations (8 - 10, section 3), we now obtain the generalized

terms of Rankin -~ Hugoniot for a compression wave in the following form:

~r

=1,

. qU—U)— Py+Pg) + 1+ Pp =0,

D (=Tt g~ + 4 (Pr, —Wbr) — P+ 1 =0

3

~ by
Here is designated pR - ;B. These terms are easily obtained, also not
1

resorting to common equations (Tgomas L.. H., Journal Chem. Phys., 194k
Ve 12’ p. k49).
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Figure 2.
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Figure 3.

of a compression wave in monatomic hydrogen on the
relation of pressures ﬁé = pZ/p1 (conditions the same

for Figure 2). Dotted lines are related to homogeneous
gas (2, = 2, = 0)e
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Let us consider the change of entropy inside a compression wave.

Proceeding from the known thermodynamic formula:

ds g
dt T

(s is entropy, t is time), we find:

> 4(1+z) B dz s
ds == e 27 = 2.
* Br—v)u '{3‘ 4 du. du; s R’ (6)

Entropy at first increases, reaches a maximum in point u = a , then

decreases. A complete change of entropy in passage through a wave

39



equals:

—-r o - ~ "‘ﬂ (,}") -
As=s(u,)—s(l)=—4ql(l+z,)! ?‘«-(E—)-du. (7

This magnitude is positive, i.e., the second law of thermodynamics is ful-

filled if it is applied to beginning and final states of the system.

as—\

a7

Q6]

-5 DSy

—F

7 0 7M 7 70*

Figure 5. Dependence of the number M, (number M after a wave)
on the relation of pressures P, (conditions the
same as for Figure 2). Dotted lines are related to

homogeneous gas.

It is not difficult to see that in the case of flow through a come
pression wave, special points A and B correspond to infinity to the left
and right, and in point A we have u =’§1 =1, in point B U = %}, whereto
'32 <a* <1 (sign of equality only in a case of movement with constant
speed equal to the speed of sound), and the speed diminishes from 1

. -~ . . s ~s
(supersonic zone) to u, (subsonic zone). We will consider u a monoto=-

nously decreasing function of 7 (correspondingly of x). Consequently,
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the problem of study of flow inside a compfession wave resolves itself

to search of the solution of the equation (8, section 5) satisfying the

conditions:

' (8)

u=1, y=
y

-
N e e

0
0

and disposed in the lower semiband (Figure 10). The solution should

pass through points A and B and intersect the integral curve (10, sec-

by}
¥y or 4 3 Wl LS

tion 5), which is possible only in special points C,

consist of two branches. The left branch (subsonic) in any case comes

from point B and asymptotically the line ? = ¥*. The right branch
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Relation of speeds 3; and densities'g’ of a compression
wave and the degree of ionization behind a wave z, in
dependence on the number i, (conditions the same as for

Figure 6.

Figure 2). Dotted lines are related to homogeneous gas.

(supersonic) comes from point A and approximates the line U =7a* if K*
> 1 and intersects it at point C if K* <1; in the first case in passage
through the speed of sound, the line U () has a vertical tangent, and in

the second case, an angular point.
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In both cases there is a continuous monotonously decreasing function GZT),
and consequently also u(x), satisfying all provided conditions, whereas
without calculation of radiation, system (1) gives two constant values
T (us=1, u =J§2). i.e., the solution is discontinuous. With calcula-
tion of radiation is obtained a continuous solution, but with some pecu-
liarity, mentionéd above, in passage through the speed of sound and con-
nected with those assumptions made by us (in particular, with disregard
of viscosity and thermal conductivity).

The meﬁber a3y of equation (7, section 5) contains a small multi-
plier o, and in some cases this may be disregarded (for example, with
diffusion of a wave in atomic hydrogen under ordinary conditions this may

ve done for numbers Mi of the order 15 and even greater). Then the equa-

tion may be integrated, and for the adopted boundary conditions we obtain:
T==rgq,ln (-a—:-) (9)

(plus sign for ¥ < a*, and minus sign for u > a*). Equation (7, sec-
tion 5) with By = 0 has four special points A, B, E, and F. The equa-
tion does not have special points C and D in this case, although the
line U = 3* remains an integral curve. Therefore, the approximation
mentioned above is possible only with K < 1,

Dependence of hydrodynamic parameters on 4 is given by equalities
obtained in section 5, if it is assumed that Hl = 0, and it is shown for
several examples in Figure 11 to 16. For one and the same value q be-
tween magnitudes obtained without calculation of jonization (we will

designate them with the index N) and magnitudes with calculation of

] - . - » - s -
ionization, are justified for one and the same value u the correlations:

-~ -~ t - -~

P=0y P=Ppn

= 14z
T=153 T

He= Hy— B85 (z2—2,).
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as for Figure 2). Dotted lines are related to homogene-
ous gas.

Ionization leads to increase of speed Eé after a wave and to decrease of
temperature and absolute value of the stream of radiation. It is not
difficult to see that the maximum value of relative temperature is ob-

tained at the point

-~ g 231
a="'"'—4+z,,.(l-:,,,)' (10)
where z, is determined by the formula of Sakh for this value u. Appar-
8 m ~
ently, 17<§1%j<§%- y whereto the greatest value of'um corresponds to

homogeneous gas, and the least - to such initial conditions in the gas

as when z, = %. The maximum value of Tm is included in the limits

we<Ta<t,
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The critical speed U* = a* for homogeneous gas equals 2 with
P q B )

calculation of ionization, as is not difficult to calculate:

= (11)
z(1—2) " 11
1+ 2 ]

and from here it follows, if it is considered that 1 s vy sg
8 ~ ’5
T <@ B <5

i.e., in the presence of ionization critical speed is less than the
critical speed of homogeneous gas in one and the same conditions to

~ b
infinity on the left. Equating (10) with (11), we find that u, 2 ar,

whereto the sign of equality is justified with y = 1, or with vy =-3§

(movement of gas everywhere with the speed of sound); in all other

cases we have inequality. Moreover, it is easy to calculate that with

5

9 > 3 we have Em > Gé. Consequently, maximum temperature is attained
not "after the wave," i.e., not in infinity to the right, but "inside

the wave," in the subsonic zone.

k5
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The degree of ionization z may change from O to 1 and, as is seen

from formula (6, section 5) and in Figures 17 and 18, reaches the maxi-

mum in the region of subsonic speeds. If conditions are near normal,

then with numbers Ml < 6 for such gas as monatomic hydrogen, ionization

may be disregarded in equation (7, section 5).

Actually, in this case,

maximum magnitudes of the degree of equilibrium ionization and of
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moduli derived inside the wave prove to be very small as compared with

unity, as if seen from Figure 19 and from the table on page 49.

Measured coordinate.

Until now we have utilized (16, section 3),

which afforded the possibility to completely not touch upon charac-

-
teristics of the function o(u). In order to go over to a measured
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cm
coordinate x, it is necessary to give in manifest form the coefficient
of opacity of as a function of already known magnitudes. Calculation of
o presents great difficulties of a physical character. We will limit
ourselves, in the quality of examples of calculation, to utilization of
the formula of Chandrasekar known from statistical mechanics [2]. In

the case of single ionization, it is written as
n 2,43 ’
%= G, (1 Tt 7“>ZX" (12)

where the constant magnitude ¢y equals:

— 40 e2hit
Y3 emo(2zm) k'l

€

(¢ - speed of light in a vacuum, e - charge of the electron, @, = co-

efficient of Opacity in calculation for one atom). In calculation for

a unit of mass we obtain

et (12 1
e (i) @
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: €y
here a= “‘m T"' Xu

%_—kT

Utilizing these expressions, Wwe may evaluate by the formula:

Y 31

1 udu
*==J) "oy (14)

a*

which follows from (16, section 3) and (7, section 5), all magnitudes

in dependence on X.
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If the degree of ionization is small and it may be disregarded in

comparison with unity, then formula (6, section 5) may be written as:

A R
z=VoT'u%e T
. 3.
T:l o
o~ 1 44
W =0 — g ==
1 opﬂ P1 ’ b] len

(15)

If temperatures are not very great, then in formula (13) unity as com-

pared with the member

3

T

may be disregarded, and we obtain:

- ~~-—2
a=cacgpT 328,

53
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Unmeasured speed U inside a compression wave in de-
pendence on optical thickness T (monatomic hydrogen,
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Solid curve - precise solution, dotted - approximated

by formula (9).
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cm

Substituting here for z expression (15), we find:

by
-3 b~ o
a=wT e T;

wy == 5 V.

17)

In the case of ﬁz = 0, dependence of relative speed on the measured

~/
coordinate in force (9) and on correlations of section 5 for T and SJ

~are expressed by the quadrature:
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where
3

2
A= 20l

’
@9 €36

In the maximum case, when py - O, the eqﬁation

w
':=fpadx
0

(18)

(19)

leads to the result that ©w—0 in any final x, and from (9) it follows

that in this case U = a~, i.e., We have movement of gas with the speed

of sound, the only continuous solution for the case of ideal

ohE
10
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Figure 25. Unmeasured speed U inside of a compression wave in

monatomic hydrogen (pl = 106 dynes

o

absolute) with M, = 20.

1
Lz
10

09
\ {3
NL_gs

\a7
2 g5

a5
2\

a3,
02—\

YT ]
I
=030 -Q25 -Q20 -GQ% -Q10 -005 0 405 QU Q5 G20 §o5 Qiem

- 4

\R¢

Figure 26. The same as Figure 25, but with M; = 30,
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From formulas (13) and (6, section 5), it is seen that the coeffi~
cient of opacity « is small not only with a small z, in other words,
with small temperature 52 but also with very large 5 (in the latter case
z - 1), However, with such conditions, formulas (6, section 5) and (13)
become invalid, and new correlations are needed for calculation of z

and o.
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Figure 27. Unmeasured speed 4 inside a compression wave in
monatomic hydrogen (solid line) and in argon 4
(dotted curve); M, = 3, p, = 106 dynes ¢ - 10
1 1 2 1
degrees absolute. cm

In the quality of examples of investigation of the structure of a
compression wave in monatomic gas with calculation of transfer of heat
due to radiation and single ionization, we will introduce results of
calculations of two cases: 1) of a very intensive compression wave

(M1 = 20 and M1 = 30) in monatomic hydrogen under conditions near to.

normal : P, X 106 QIE%E, Tl = 300 degrees absolute; 2) of a compression

cm
wave with Ml = 3 in strongly heated monatomic hydrogen and argon;

p, = 106 QZESE, T, = lOL+ degrees absolute. In all these examples K* >

1l
cm.
> 1 and integral curves emerging from special points A and B stretch to

—
=75

and o, = % are presented in Figures 23 to 31, whereto in some figures

infinity with a - ur (Figure 22). Results of computation for &,

are depicted for comparison also corresponding values for homogeneous
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Figure 28. Relatlve pressure p. temperature T. and density
p inside a compression wave in dependence on T;

M, = 30, py = 10° -‘1&;—5-, T, = 300 degrees absolute.
cn

gas (designated with the index N in distinction from the index z for

ionized gas).

Thickness of a wave. The field of change of functions characterize

ing the flow of gas inside a compression wave ranges from -o¢ to +®, Howe
ever, these changes take place so quickly that a guite narrow layer may
be isolated outside of which functions are nearly constant. For thick-
ness of a compression wave is ordinarly also accepted the thickness of
the mentioned layer. With such a determination, of course, great arbi-

trariness is admitted.

We will take for the thickness of a compression wave 'l;‘r the width

' ~ e
of the layer where speed u changes from':; 1 <1l to u, 1 > “2' whereto
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cm
Gy =3t e (1 —3%; |
“2.1?:0'—5(1—jjl;g), } (19
where € is a proper fraction. Thus we have:
'71..1 -
di
= | Loy (20)
%31
which in approximation (9) gives:
t —=—a ln 44_('71.1)34(';2.:)
Y @ (1)
For homogeneous gas (z = const), the latter equality gives:
{i=—2a,ln(l —§%). (22)

Utilizing formulas (20) and (21) we obtain the values tT. introduced in

Figure 33 (monatomic hydrogen, p; s lOG.Qﬁ_xg_s_’ T, = 300 degrees absolute,
cm '

58



]
2] Cf

=

e ot

4%

l’—_ T e . = et ™

: r_\\ *

™~

'\'

P e e PR U e i af ~ =

1=
s

[
",
T

//
/
{ | ]

20 A5 T2 08 6 4 2 0 2 % 6 & W 72 N % 8 Dow>

papmse
S T st o

et e

1
\N‘q\ “Q‘V%%'§!§lr§'
1
{
!
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cm

v T, = th degrees absolute.

51 1

€ = 0.8), and namely: t, = 1.56 (Ml = 20) and t, = 1.04 (&l = 30); for

€ = 0.9 the corresponding values will be 2.75 and 2.03.
"In the case of diffusion of waves in monatomic hydrogen and argon
with M, = 3 (p) = 10° -‘1\”3‘%5-, T, = 10" degrees absolute, £ = 018) we
cm :

1.46 (argon). If we take § = 0.9,

obtain: t, = 1.21 (hydrogen) and tT

2.05 (hydrogen) and 2.44 (argon).

then in the latter case we have: tT
Optical thickness may be considered the length measured in mean lengths

of a free run of radiation (6}, if the act of radiation of a light gquan-
tum is considered the beginning and the act of absorption the end of the

free path of the run of radiation. "Optical thickness" of a wave equals

from 1 to 2, i.e., the order of length of a free run of radiation.
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Figure 32. Determination of thickness of a compression wave.
Analogically, the measured thickness of a compression wave may also be
determined. Utilizing formula (13) for determination of the coefficient

of opacity o, we obtain for monatomic hydrogen (p1 2’106 91255, T, = 300

1
cm
degrees absolute, § = 0.8):
t = 3.17 cm (Ml = 20) and

tx = O.l6 cm (Ml = }o)o
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Figure 33. Optical thickness of a compression wave in

monatomic hydrogen with p, = 106 = ngs’
cm

Tl = 300 degrees absolute with calculation

of ionization (solid curve) and in homogene-
ous gas (dotted line).

Further increase of the number M1 again leads to increase of tx because
of the decrease of the coefficient of opacity. For other conditions

(pl = 106 21325, Tl = 104 degrees absolute, Ml = 3, € = 0.8) we have:
cm
t, = 23.4 ¢m (monatomic hydrogen) and t, = 16.0 cm (argon).
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